Evaluating Go Game Records for Prediction of Player Attributes

Josef Moudřík J.Moudrik@gmail.com Faculty of Math and Physics, Charles University in Prague

> Petr Baudiš Independent researcher

http://gostyle.j2m.cz

Introduction

- There exist large collections of structured .sgf Go records
 - KGS Archives, GoGoD, gobase.org, gokifu.com, ...
- So far, the computer analysis of the data is mainly limited to:
 - statistics of next move in fuseki and learning heuristics to improve Computer Go tree search
- Can we use the data differently?
- E.g. to answer questions like this one?

What constitutes the strength?

Our approach

• Given a set of games G, create an evaluation which

- robustly describes the set of games for a player, by making statistics of certain events in the games
 - e.g. sente/gote use, most frequent patterns, high/low plays, ...

The Evaluation

• We process the games **G** one by one and summarize the different statistics (features) in a following vector:

F-1: Pattern Feature

- Frequency of 400 (in the paper) most frequent spatial patterns
 - the patterns are centered, normalized to be black to play and invariant under rotation and symmetry
- 1) Find the 400 most frequent patterns
- 2) We count how many times does each of the 400 patterns occur in the set of games **G**

3) E.g. **20 7 0 11**

4) Normalize this, by dividing by #games in G

F-2: ω-local Sente and Gote Sequences

- Assumption: Reply to a sente move is always local.
- **Definition:** A move is ω -local if it its distance to previous move is smaller or equal to a fixed number ω .
- Allows to approximate what is sente/gote:

• The feature: Average number of sente and gote sequences per game and the difference between them.

F-3: Border Distance

- For each of the games in **G**, we count number of moves which fall into a particular bin.
- Numbers in the bin are averaged for all games in **G**.

A Little Quiz

• Who is this?

Line number	Move-number				
1	. 1	06	4 20	00 er	hd
1st, 2nd	2%	18%	29%	43%	
3rd	60%	28%	14%	9%	
4th	35%	22%	13%	11%	
5th and above	3%	32%	43%	36%	

A Little Quiz,

• Master Sakata!

Line Move-number number 10 64 200 end 1st, 2nd 2% 18% 29% 43% 3rd 60% 28% 14% 9% 4th 35% 22% 13% 11% 5th and 32% 36% 3% 43% above

F-4: Captured Stones

- For each of the games in **G**, we count number of moves which fall into a particular bin.
- As before, numbers in the bin are averaged for all games in **G**.

F-5: Win/Loss Statistics

- From games **G**, we also count how many times did the player (on average):
 - win by counting
 - win by resignation
 - lost by counting
 - lost by resignation
- For games lost and win by counting we also count average size of the win/loss.

What to do with the evaluation?

- Strength prediction:
 - data from KGS Archives
 - for each rank from 20-kyu to 6-dan, we gathered 120 players at the particular rank
- Style prediction:
 - data from GoGoD and our questionnaire
 - for 25 professionals, we gathered 12 sets of 16 games

Style	1	10
Territoriality	Моуо	Territory
Orthodoxity	Classic	Novel
Aggressivity	Calm	Fighting
Thickness	Safe	Shinogi

Prediction Methods and Results

- Machine learning method of Bagged Artificial Neural Network, see the paper for details
- Strength:
 - std. error of 2.712 rank
- Style:
 - std.error of ~ 1.55

Territoriality	Orthodoxity	Aggressivity	Thickness
1.527	1.734	1.548	1.572

Applications and Discussion

- Style prediction:
 - reccomend relevant pros to review
- Strength prediction:
 - help ranking systems to converge faster
 - correlations between strength and pattern frequency
 - study reccomendations

Realized at http://gostyle.j2m.cz

Thank you for your attention!

Please contact me if you have any remarks! J.Moudrik@gmail.com

Visit our web-application at:

http://gostyle.j2m.cz

Gridcular Metric

• A function we use to measure distances on the goban:

distance(A, B) = dx + dy + max(dx, dy)

9	8	7	6	7	8	9
8	6	5	4	5	6	8
7	5	3	2	3	5	7
6	4	2	0	2	4	6
7	5	3	2	3	5	7
8	6	5	4	5	6	8
9	8	7	6	7	8	9

Gridcular Metric

• A function we use to measure distances on the goban:

distance(A, B) = dx + dy + max(dx, dy) = 8

3

	and the second second			AL 971	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
9	8	7	6	7	8	9
8	6	5	4	5	6	8
7	5	3	2	3	5	7
6	4	2	0	2	4	6
7	5	3	2	3	5	7
8	6	5	4	5	6	8
9	8	7	6	7	8	9

2

3